

Lavtemperatur-opvarmning og højtemperatur-køling

Bjarne W. Olesen Center for Indeklima og Energi Danmarks Tekniske Universitet

ICIEE.DTU Research Team Radiant Heating and Cooling Systems

Kan Shindo, Ph.D. student Dragos-Ioan Bogatu, Ph.D. Student (Fanger legat) Jun Shinoda, Post Doc Ongun B. Kazanci, Associate Professor, Team leader Bjarne W. Olesen, Professor Emeritus

DTU

Lavtemperatur-opvarmning og højtemperatur-køling

- Kendte systemer
- Gulvvarme er ofte standard i boliger.
- Nye randbetingelser
 - -Forsyning
 - $-CO_2$ emission fra bygninger i drift
 - -CO₂ emission under produktion, installation og vedligehold

Fremtidig energiforsyning i Danmark

- Fjernvarme og Fjernkøling
 - -Lavtemperatur fjernvarme
 - Lav temperatur (55/25°C)
 - Ultra-lav temperatur med elektrisk "boosting" (45/25 °C)
 - Ultra-lav temperatur med varmepumpe "boosting" (35/20 °C)
 - -Sænkning at returtemperatur
- El

DTU

Ħ

- -Varmepumpe
- -Individuel PV-anlæg
- Energilagring
 - -Termisk lagring (bygning, systemer)
 - -Elektrisk lagring (batterier, bil)
- Elnet
 - -Varierende forsyning
 - -Varierende priser

What is Low Temperatur Heating/ High Temperature Cooling?

- Heat exchange through large surfaces (floor, ceiling, walls)
- Supply water temperatures:
 - Heating: 25 40 °C

DTU

- Cooling: 16 23 °C
 - temperature limited by dew-point to avoid condensation)
- Wide range of systems, solutions both for residential and non-residential buildings

DTU

Suspended cooled ceilings

Bild 22 Metallsegel, Kühltechnik

Suspended cooled ceilings

Capillary Tubes

DTU Radiant surface heating and cooling systems

Thermo Active Building Systems Floor

Window

HISTORY

Frank Lloyd Wright's Usonian Houses 1930's

A lightweight floor slab was used and the traditional basement was dispensed with. By using steam or hot water piping, it became possible to heat the floor, therefore eliminating the need for radiators. The overall result was heat without a draft or temperature variation of the most comfort - cool head and warm feet.

c. 10,000 B.C., China, the word "kang,"
can be traced back to the 11th century B.C.
and originally meant, "to dry" before it
became known as a heated bed.
c. 5,000 B.C., evidence of baked floors are
found foreshadowing early forms of
"kang" and "dikang" (heated floor) later
"ondol" (warm stone) in China and Korea,
respectively.

HISTORY

Figure 2: Structure of entirely ondol floored room.9

Hypocausts were used from the third century B.C. in ancient Europe.

Determination of Heating and Cooling Capacity

SURFACE HEATING AND COOLING

Heat transfer coefficient

SURFACE HEATING AND COOLING

Max. - Min. Surface temperature

MAXIMUM HEATING AND COOLING CAPACITY

Radiant Floor Cooling

More than 100 W/m^2

Method for verification of FEM and FDM calculation programs

Method for verification of FEM and FDM calculation programs

Standards

- DS EN ISO 11855 Building environment design Embedded radiant heating and cooling systems
- Part 1: Definitions, symbols, and comfort criteria
- Part 2: Determination of the design heating and cooling capacity
- Part 3: Design and dimensioning
- Part 4: Dimensioning and calculation of the dynamic heating and cooling capacity of Thermo Active Building Systems (TABS)
- Part 5: Installation
- Part 6: Control
- Part 7: Electrical heating systems

Figure 2 – Example of peak-shaving (reducing the peak load) effect (time vs. cooling power [W],)

Control of radiant heating and cooling systems

Control of a combined floor heating-cooling system with individual room control

DTU

SELF CONTROL

SELF CONTROL

% decrease in heat output by 1 K room temperature increase

Construction and Installation Technologies

Examples

pic. I D 15

Installation of PEX pipes

Terminal building

Balanced Office Building (BOB.1) Aachen, Germany

- Gross floor area $2,151 \text{ m}^2$
- 4 storeys
- Efficiently insulated external envelope
- Ground-coupled heating and cooling with TABS
- Ventilation system with heat recovery
- Daylight-controlled lighting
- Rainwater collection for use in toilet flushing

Energy concept in BOB.1

cooling period in BOB.1

EU Project: Hybrid GEOTABS

https://www.hybridgeotabs.eu/

Boydens et al., Renewable and Storage-integrated Systems to Supply Comfort in Buildings, A&S/books, 2021 D5.2 & 5.3, Review of comfort, productivity, and health in hybrid MPC GEOTABS buildings, DTU & MU, hybridGEOTABS

Energy and CO₂ emission savings

Introducing GEOTABS as a primary system reduces CO2 emissions by about 26%, and additional savings of 38% are achieved by replacing the RBC with MPC

The savings from MPC are mainly due to the reduction of electricity and preheating in the ventilation system and reduction of heating demands of the secondary system.

Yearly CO2 emissions by net-conditioned area for a nonGEOTABS-RBC, hybridGEOTABS-RBC and hybridGEOTABS-MPC office building simulation, considering the CO2 emissions in the average EU lectricity mix in 2020 (260 g CO_2/kWh) (left) and a low-carbon electricity mix (90 g CO_2/kWh) (right)

Demonstration buildings

- a. Solarwind office building
- b. Infrax office building
- c. Ter Potterie elderly home
- d. Libeznice primary school

- No significant difference in IEQ between RBC and MPC according to physical measurements
- On average, IEQ-aspects were rated as good by the building occupants
- Despite a very uniform climate large interindividual differences were found
- MPC significantly improved energy-efficiency without any negative influences on the indoor climate

Radiant Floor Cooling

OPERA HOUSE

Opera House in Copenhagen Summer indoor climate in Foyer

- Radiant floor cooling with stone cover down the structural slabs to reduce peak cooling load
- High air change by displacement ventilation system.
- Humidity control prevents condensation on floor.

References / South, West Europe

- Modern Old Port of Savona, NW coast of Italy
 - Underfloor heating for 140 high-end residential apartments and shopping area at ground level
- Dolce Vita Tejo, Lisbon, Portugal
 - one of Europe's largest shopping centre, floor heating and cooling

Industrial heating/cooling application: BWM World Munich, Germany - 2007

- 16.500 m² of floor, glass and steel, architecture in the BWM museum
- 5,000 m² of industrial radiant cooling and heating with PE-Xa pipes integrated into the hall floor = massive invisible cooling or heating panel
- Full architectural freedom provided: An experience which appeals to all senses, allowing visitors to experience **the fascination of mobility**
- Energy-saving and environmentally friendly operation

THE WORLD'S LARGEST SIDE BY SIDE COMPARISON OF VAV AND RADIANT COOLING

Figure 1 - Infosys SDB-1 Hyderabad - 125,000 sf of radiant cooling and 125,000 sf of VAV cooling

Sun shading and daylight penetration RADIANT VAV

Building 10 **Tomorrow's** Enterprise 18 row's Enterprise

Energy

Radiant Cooling - Third Party Evaluation

Infosys"

Thermal Comfort

Radiant Cooling – Third Party Evaluation

Infosys

TABS with "凸凹deko-boko" slab

Radiation Cooling and Heating

Healthy and comfortable

• Improvement in quality of room air by increasing supply rate of fresh air.

Energy Conservation

- Reduction in heat transfer energy by converting heating medium (air \rightarrow water).
- Improvement in heat pump COP by raising temperature of supply chilled water.

TABS

With the situation that nuclear power plants remain inoperable, the electricity in Japan is still tight.

⇒ Reduce power demand

Run radiant operation at night $\Rightarrow 20$ W/m² is decreased in daytime ₅₀

TABS-ACOUSTIC

• Cooling performance reduction as a function of the ceiling coverage ratio

Adapted from Lombard, 2010 and Dominguez et al. 2017. h in the legend is the distance between the ceiling and sound absorbers

How to get similar TABS benefits in existing buildings?

¹Markus Koschenz and Beat Lehmann, "Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings", Energy and Buildings, 2004

³R. T. GmbH, "rubitherm.eu," Rubitherm, 2022. [Online].

https://www.rubitherm.eu/en/index.php/productcategory/makroverkaspelung-csm. [Accessed 21 April 2022]

⁴Thermacool Panel and Tile, <u>Phase Change Materials</u> <u>PCMs</u> <u>Ceiling Systems</u> : <u>ThermaCool</u>, [Accessed 21 April 2022]

²Georgi Krasimirov Pavlov, "Building Thermal Energy Storage", PhD Thesis DTU, 2014

⁵Bogatu et al., An experimental study of the active cooling performance of a novel radiant ceiling panel containing phase change material (PCM), Energy and Buildings, 2021

Air PCM Top and bottom steel sheets

ZERO-Carbon Emission Buildings

- Carbon emission during operation
- Carbon emission during production, maintenance, destruction

Whole Life Carbon Emission Distribution for Average Commerical Building

Operational and embedded carbon in TABS and air system

- Energy efficiency and sizing
- Embedded carbon of MEP
- Floor height and non-ceiling panel
- Renewable resource (Geothermal)

Utilities	Emission Factors, GWP [kgCO ₂ -eq/kWh]	
	EN/ISO 52000-1:2017 Table B.16	Building Regulations, (BR18)
Electricity	0.420	0.187
District Heating	0.260	0.105

Konklusion

Også under fremtidige krav til:

- Lav CO₂ emission i brugsfasen
- Lav CO₂ i produktion, vedligeholdelse af systemer
- Øget brug af regenererbar energi (vind, PV, jordvarme etc.)
- Flexibelt energiforbrug
- Et komfortabelt og produktivt indeklima
- Er lav-temperatur opvarmning og høj-temperatur-køling "et godt tilbud"