

Smart Readiness Indicator (SRI): a tool to prove smartness of building services ?

Workshop in Aarhus on 6th of November 2019

Prof. Risto Kosonen

Overview of the presentation

- Background of Smart Readiness Indicator (SRI)
- SRI methodology
- SRI experiences in test buildings
- Next steps of SRI implementation
- Conclusions

Clean district heating and cooling network

SMART ENERGY

Smart buildings and interoperability

Interoperability is prerequisite for real smartness

Challenges: open interfaces and cyber security

Need to develop knowledge-intensive services for high performing buildings

Background Expected advantages of smart technologies

EXPECTED ADVANTAGES

optimised energy use as a function of (local) production

	C
+	S

optimised local (green) energy storage

automatic diagnosis and maintenance prediction

improved comfort for residents via automation

Background of the Voluntary Smart Readiness Indicator (SRI)

- Developed by European Commission to help recognize smarter building technologies and functionalities which enhance the energy efficiency and other relevant performance characteristics
- SRI is part of the new Energy performance of buildings directive, but at the moment voluntary

Measure the technological readiness of your building

VITO: Stijn Verbeke, Yixiao Ma, Paul Van Tichelen, Sarah Bogaert Waide Strategic Efficiency: Paul Waide OFFIS: Mathias Uslar, Judith Schulte

Three potential assessment methods

Aalto University School of Engineering

Smart readiness indicator (SRI) Based on multi-criteria assessment

- The smartness of a building is assessed qualitatively by Specific technologies are not required to be described
- Service should just be able to implement and not necessary used yet (software issue)
- Service that is not relevant could be neglected (triage process).

Note: some services are specified to be mandatory in the methodology

Structure of the smart ready services catalogue

Domains in SRI

The impact criteria in SRI

Proposed weighting schemes in domeins

Proposed weighting scheme for impact categories

Triage process could be used

For this example, the service E is not considered relevant for the building and thus is not evaluated.

Heating-S1 (aiemmin Heating-1a): Heat emission control Ventilation-S1 (aiemmin Ventilation-1a): Air flow control at the room level Lighting-S1 (aiemmin Lighting-1a): Artificial lighting control

- Heating-1a: Heat emission control except in case when TABS is present
- Heating-1e: Intermittent control of emission and/or distribution One controller can control different rooms/zones having same occupancy patterns
- Ventilation-1a: Supply air flow control at the room level
- Ventilation-1b: Adjust the outdoor air flow or exhaust air rate
- Ventilation-6: Reporting information regarding IAQ
- Lighting-1a: Occupancy control for indoor lighting
- Lighting-2: Control artificial lighting power based on daylight levels

Tool for SRI Scoring to assist the evaluation

Smart Readiness Indicator for Buildings

Please note that the presentation of results does not reflect the final intended presentation/format of the SRI, but is merely provided for testing purpos Research on the proper format is ongoing.

2 4

Time table for the next development phases

SRI public bèta testing

- Participation to public testing still possible: feel free to spread the message in your network / organization!
- Please register on <u>https://smartreadinessindicator.eu/testing-sri</u>

Results of public beta testing

					SC	ORE
	Typology	Country	Size	Age	Method B	Method A
ſ	SFH	Greece	200-500	1990-2010	14%	11%
+	MFH	Greece	1.000-10.000	1990-2010 renovated	13%	21%
L	SFH	Finland		1960-1990		14%
٢	Office	UK	1.000-10.000	1990-2010	15%	
	Office	Italy	500-1.000	1960-1990 renovated	34%	
+	Office	Greece	1.000-10.000	<1960 renovated	18%	21%
	Educational	Finland	>25.000	>2010	67%	
	Retail	Finland	>25.000	1990-2010	91%	

Case-study analysis of SRI in Finland

- Ten buildings have been assessed (offices, education, shopping mall, hotel, residential)
- Most of the selected new buildings represent the state-of-the art buildings ("A-class") and some older buildings as reference
- Typical assessment took around 1.5-2 hours where experts of SRI methodology and building technical services were present

Main findings so far

Relevancy of services and functionality levels in Finland

- The triage process is required because many of the services are not relevant for Finnish conditions
- Energy storages always get higher functionality level in assessment, even in practice it might be more reasonable to use energy directly, especially with district heating/cooling.
- The increase in smartness from lower to higher level is not necessary giving any benefits for building owner

- Cooling, ventilation, lighting, dynamic building envelope, energy generation and demand side management 0 %
- **?!** The age of the building affects the SRI score

60's Rowhouse

Project Data

Location	Helsinki, Finland		
Year of Construction	1967		
Type of Building	Residential Rowhouse		
Floor Area	2 570 m ²		
Number of Floors	1		
Energy Class	N/A		
Indoor Climate Class	door Climate Class S3		
Basic Design Features			
 District Heating + Water Radiators 			
Mechanical Exhaust Ventilation			

Design by Laura Remes

SRI – phase 2 (beta)

60's Rowhouse

- Intelligent lighting, automatic heating system, 90 % of domains covered
- Demand side management and storage of locally generated energy not applied
- Low scores on energy generation, because there
- is no storage. The best energy class A!

Väre		
Project Data		
Location	Espoo, Finland	
Year of Construction	2018	
Type of Building	Educational Building	
Floor Area	43 000 m ²	
Number of Floors	4	
Energy Class	А	
Indoor Climate Class	S2	
Basic Design Features		
 Ground Source Heat Pump + Radiant Panels 		
 District Heating for Supporting Heat Generation 		
 Mechanical Balanced Ventilation with Heat Recovery 		
Ground Coupled + Radiant Panels		
 Chillers for Supporting Cooling Generation 		
 Solar PV Utilization 		

Design by Laura Remes

SRI – phase 2 (beta)

Väre

SRI score

- 90 % of domains above medium level, 40 % of domains 100 %, high SRI scores for all impact categories, SRI A level
 - Dynamic building envelope not applied
- **?** Part of the smart energy system, microgrid functionality. High
- SRI score is achievable with district heating.

Project Data			
Location	Espoo, Finland		
Year of Construction	2003		
Type of Building	Shopping Centre		
Floor Area	100 000 m ²		
Number of Floors	N/A		
Environmental Certificate	LEED Platinum		
Indoor Climate Class	S2		
Basic Design Features			
 District Heating 			
 Air Heating 			
 Mechanical Balanced Ventilation with Heat Recovery 			
 Solar PV Utilization 			
Advanced Demand Management			
Electricity Storage			

Design by Laura Remes

SRI – phase 2 (beta)

Sello

SRI scores with different design solutions (previous phase scoring system)

Building	Year of	Assessed	Absolute	Relative
Туре	Construction	Services	SRI Score	SRI Score
Shopping Centre	2003	41/52	73 %	92 %
Office	1990	36/52	43 %	60 %
Office	2014	44/52	48 %	55 %
Educational	2018	45/52	47 %	52 %
Office	2013	44/52	42 %	50 %
Educational	2015	33/52	35 %	46 %
Office	2004	36/52	35 %	46 %
Residential	2018	28/52	28 %	46 %
Hotel	(2020)	39/52	33 %	41%
Residential	1967	20/52	11 %	40 %
Hotel Residential	(2020) 1967	39/52 20/52	33 % 11 %	41% 40%

ightleftr

- ↓ Old building with monitoring services
- ☆ Energy efficient and good indoor climate

- ↓ Fulfills just building code (new)
- ↓ Fulfills just building code (old)

Discussion : the cost of incremental points in SRI

Project Data			
Location	Helsinki, Finland		
Year of Construction	1990		
Type of Building	Office Building		
Floor Area	6 998 m ²		
Number of Floors	4		
Environmental Certificate	BREEAM Very Good		
Indoor Climate Class	ass S2		
Basic Design Features			
District Heating + Water Radiators			
Mechanical Balanced Ventilation with Heat Recovery			
 Passive Chilled Beams 			
Intelligent monitoring control 87.5% of impact categories covered			

Intelligent monitoring control, 87,5 % of impact categories covered, most of them above medium level

?! Overall SRI score above the medium level as most of the impact categories

Aalto University School of Engineering

Discussion : how to earn more points in SRI

- Windows and solar shading 900 000 euro
- Light fittings: occupancy and automatic dimming 300 000 euro
- Ventilation: airflow control & pressure optimization, free-cooling and reporting 120 000 euro
- Heating: motorized valves, inlet water/pump demand—based control, DH sub-station & reporting 50 000 euro
- Cooling: motorized valves, inlet water/pump demand—based control, chiller & reporting 50 000 euro
- NOTE: even there is no investments, software change costs could be significant to transform building from "smart readiness" to "smartness activated mode"

Potential SRI implementation pathways include:

- A. Linkage of the SRI to the EPC (potentially in a mandatory way) so an assessment would be offered each time an EPC is conducted
- B. Linkage of the SRI to new buildings and major renovations so that each time a new build/or renovation is undertaken it would be a requirement
- C. A market-based voluntary scheme where self-assessment is supported by on-line tools and 3rd party certified assessment is offered to those willing to pay for it
- D. As option C. but with 3rd party assessments supported, or subsidized, by the state and/or utilities seeking to roll out flexibility, energy efficiency, electromobility and self-generation measures
- E. Linkage to the TBS/BACS deployment trigger points in Articles 8, 14 & 15 in the EPBD
- F. Linkage to smart meter deployment
- G. A mosaic of the aboves

Conclusions

- Need for smart buildings that adapts the need of occupants, guarantee high performance of building services and integrate with energy systems
- Novel services are required to fulfill requirement of smartness
- Standard building level of SRI scores is at 15-50 %
- In SRI, to obtain high SRI (over 60 %) scores requires demand response readiness and utilization of energy storage
- SRI scheme is still under development phase

