Demonstration of Software Tools Case Studies

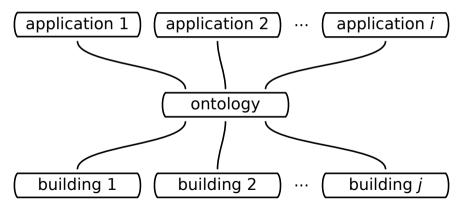
Aslak Johansen asjo@mmmi.sdu.dk

April 5, 2018

Problem

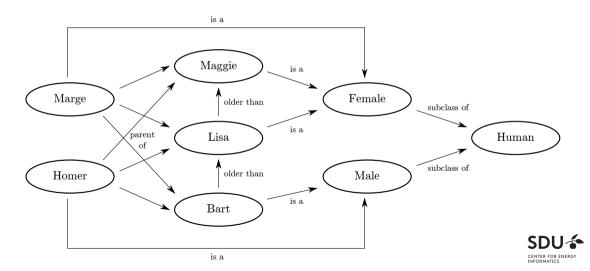
We want to write applications for a buildings

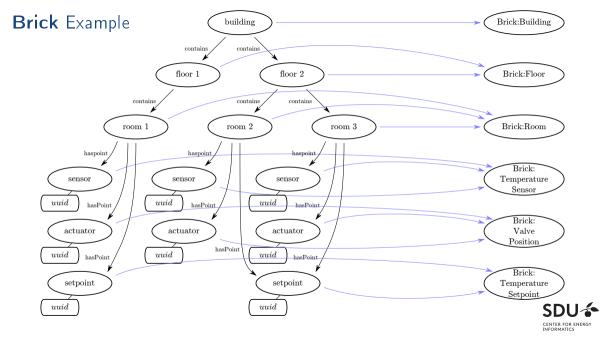
Attractive qualities:

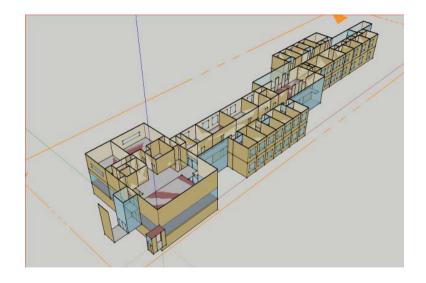

- ▶ **Portability** The application can be executed on a many buildings without modification.
- Maintainability A change in the building does not translate to a need for changing the application.

How do we accomplish this?

Approach: A Narrow Waist


The labor intensive job of mapping out the equipment, data streams and relations between those may be shared between a portfolio of applications




Ontologies A Primer

A graph describing relations between data

The Maersk Mc Kinney Moller Institute

Instrumentation

- Meters
 - Domestic water
 - ► (District) Heating
 - ► Electricity
- ► Lighting control
 - ► PIR
 - ► Light level metering
 - Control
- ► BMS
 - Ventilation
 - ► Heating
- Comfort
 - ► Temperature
 - Humidity
 - ► CO2

Instrumentation

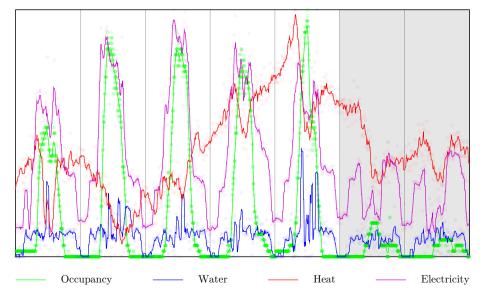
- Meters (EnergyKey)
 - Domestic water
 - ► (District) Heating
 - ► Electricity
- Lighting control (KNX)
 - ► PIR
 - ► Light level metering
 - Control
- BMS (Satchwell Sigma from Schneider)
 - Ventilation
 - Heating
- Comfort (ICMeter)
 - Temperature
 - ► Humidity
 - ► CO2

Standby Consumption: Problem

Are there any obvious efficiency issues with MMMI?

Relevant instrumentation:

- Occupancy counters delivering a signal representing the number of occupants in the whole building
- Domestic water main meter
- District heating main meter
- Electricity main meter



Standby Consumption: Query

```
SELECT ?building_name ?meter_type ?meter_uuid
WHERE {
    ?building rdf:type/rdfs:subClassOf* brick:Building .
             rdf:type/rdfs:subClassOf* brick:Meter .
    ?meter
    ?building rdfs:label ?building_name .
    ?meter rdf:type/rdfs:label ?meter type .
    ?building bf:hasPoint
                                         ?meter .
    ?meter
              bdsmap:hasData/bdsmap:uuid ?meter_uuid .
("MMMI". "Electricity Meter". "c405c583-2e57-4ba1-bd83-53a17abc6b0a")
```


Standby Consumption: Results

Crossing Systems: Problem

Occupants are complaining about the office climate in MMMI.

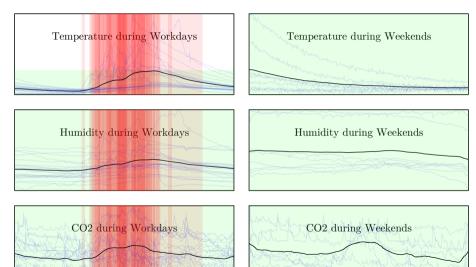
Is there a problem?

And if so, how does it relate to occupancy?

Crossing Systems: Query

```
SELECT ?sensor_type ?data_type
WHERE {
            rdf:type/rdfs:subClassOf* brick:Room .
    ?room
    ?sensor rdf:type/rdfs:subClassOf* brick:Sensor .
    ?room rdfs:label "E11-612a-1" .
    ?room bf:hasPoint ?sensor .
    ?sensor rdf:type/rdfs:label ?sensor_type .
    ?sensor ?hasdata ?data ...
    ?hasdata rdfs:subPropertyOf* bd:hasData
    ?hasdata rdfs:label ?data_type .
("Humidity Sensor", "sMAP Database")
```


Crossing Systems: Analysis


The query resulted the following sensors:

- ► Temperature
- ► Humidity
- ► CO2
- Occupancy (PIR)

In addition to this, *Arbejdstilsynet* has defined acceptable bands of temperature, humidity and CO2

Crossing Systems: Results

Heterogeneity among Rooms: Problem

We want to implement some generic room control application

How different are the rooms?

Heterogeneity among Rooms: Query

```
SELECT ?room name ?point type ?point name ?point uuid
WHERE {
    ?room rdf:type/rdfs:subClassOf* brick:Room .
    ?point rdf:type/rdfs:subClassOf* brick:Point .
    ?room rdfs:label ?room name .
    ?point rdfs:label ?point_name .
    ?room bf:hasPoint ?point .
    ?point rdf:type ?point_type .
    ?point bdsmap:hasData/bdsmap:uuid ?point uuid .
("1.6", "PIR Filter", "PIR flter", "bb12dd94-36f4-4cc3-a460-dad4c8025b03")
```


Heterogeneity among Rooms: Results

All members of a room class have the same subset of point types

40 classes were found:

- ► The largest class consisted of 8 rooms
- ▶ The second largest class consisted of 3 rooms
- The third largest class consisted of 2 rooms
- The remaining 37 classes each contained 1 room

This is known as a (very) long tail

Note: Part of this can be explained by typos in the point names

Questions?

https://speciaport.org/detail/20007/hay-blooking-of-question