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Building performance and data in buildings

What data is available and how can it be leveragea

Knowledge Discovery in Databases

Handling the data: semantics, geometry matching, data mining

Towards evidence-based decision support in high-performance design
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A SHORT STORY ABOUT BUILDING PERFORMANCE

Levels of green building activity globally (2009-2018 expected)

The building and construction
industry has come a long way in the
last 15 years in terms of sustainability!

1% to 15% Green Projects [ More Than 60% Green Projects
M Exploring M 31% to 60% Green Projects
(No Green Involvement) gy 159, t 30% Green Projects

" 1%to 15% M More than 60%
Green Projects Green Projects

| Exploring M 31% to 60%
(No Green Green Projects

Involvement)  mm 16% to 30%
Green Projects

E 13%

Source: McGraw-Hill Construction, 2016

Source: McGraw-Hill Construction, 2013 ‘
' 12015 12018

* Increase in client demands concerning building performance

* Tightened regulations

« Stronger focus on high-performance, energy efficiency, comfort, health,
and productivity

L T T, T T
T T T TR T T

5

» Rapid technological and methodological developments allowing
performance analyses and prediction

Source: www.datadrivenbuilding.org
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A SHORT STORY ABOUT BUILDING NON-PERFORMANCE

* |naccurately predicted building performance and energy consumption

... however, it's far too
common for these buildings
to not live up their potential!

» Ditference between predicted and measured performance

Why is this?

* |Inaccurate assumptions about input parameters (e.g. occupancy rate
and after hour plug load use)

* Models are rarely reused or revisited during operation

0L | #S% @] Look at .. : : :
> 96229 |the enegy bill. * No moditication of design assumptions based on actual performance
j a=we | [thought we were
. | = green? . . " . .
o /// * Inconsistencies due to external conditions, operational issues ana
\Q N ?/ occupant behavior
“Q|o* . .
‘N ) » Oversized or underperforming HVAC systems

- Operational data is available, but decisions are still largely based
on experience and rules of thumb

5

Source: www.datadrivenbuilding.org
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A SHORT STORY ABOUT DATA AND DECISION-MAKING IN AEC

* A lot of guesswork- would the completed building accommodate all current needs? What about the
severely underestimated future needs?

* Project-specitic expertise is hardly transferrable

* Previous experiences tend to drive decision-making in industry, but decisions should be evidence-based.
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WHAT KINDS OF DATA ARE AVAILABLE?

Design brief data graph databases, design requirements,
traceability, natural language processing

3D geometric data point clouds, 3D mesh geometry, 2D
shapes, fully semantic geometry

N -
Semantic BIM data aspect models and coordination models, ’ 3
clash detection, product characteristics SR

Simulation data default parameters, product characteristics,
static and dynamic parameters, measured data €0, ensoRs ©

Monitored operational data data lakes, sensor data, data
streams

Source: Schneider Electric
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THE COMMON DATA ENVIRONMENT

"The common data environment (CDE) is a central repository where construction project information is
housed. The contents of the CDE are not limited to assets created in a ‘BIM environment’ and it will
therefore include documentation, graphical model and non-graphical assets.” (BSI, 2013)

Engineer

Architect

DDSS

IR simulation

model

design
model

Save

Save

Save

Common Data Environment

Documentation documents

Graphical data data conveyed
using shape and arrangement in
space

Non-graphical data data
conveyed using alphanumeric
characters

Semantic BIM data
Design brief data
3D geometric data
Simulation data

Operational data
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KNOWLEDGE DISCOVERY IN DATABASES (KDD)

* Evidence is in hidden knowledge

+ Knowledge can be captured by using knowledge discovery in databases (KDD) approaches

* Yet, KDD needsto be tailored to the different kinds of available data

Selection Preprocessing Transformation Mining Interpretation
Evaluation
AN
N~
»Ej» j»';;‘»l’t@l»@
T =
N~
Data Target Preprocessed Transformed Patterns / Knowledge
Data Data Data Models

Knowledge discovery in databases (KDD), Fayyad et al. (1996)
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DATA MINING

“The analysis of large observational datasets to find
unsuspected relationships and to summarize the data in
novel ways so that data owners can fully understand and

make use of the data.” (Hand et al., 2001)

Neurocomputing

(C
> o

-/

PATTERN RECOGNITION

‘Pattern recognition is concerned with the automatic discovery
of reqularities in data through the use of computer algorithms
and with the use of these regularities to take actions such as Source: SAS workshop, 1998

classifying the data into different categories’. (Bishop, 2006)

S~
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Schedule
Information

O
Lighting / 1T

- - Weather Occupan cy
Data Data

S

DYNAMIC

Occupancy
Charactenshcs

PARAMETERS \’;
Occupant

Plug Comfort

Load Information

l—. Energy Water . t
Use Use quipmen
[] \%

[ ’
Devices \ ﬁ‘-/
® »

Hot Water

f

Source: Based on Mantha et al. (2015)

Time data
Energy consumption data
HVAC system operation data

Environmental data

> Data mining for operational performance analysis

~

Cross-sectional hidden knowledge discovery-
each row is treated as an independent observation,
temporal dependencies between rows are neglected
(e.g. interaction between system components)

Temporal knowledge discovery-mining data along
both axises of the two-dimensional data table (e.qg.
characterizing dynamics in building operations)
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. Design brief requirements
rimary

me Building
Bmldm_g Materials
Information

o,

Preliminary space layout 3D block model, 2D
topological model

Object type data walls, windows, flow terminal,
STATIC

PARAMETERS pumps, etc.
~ Building materials thermal conductivity, fire
W <§\\ rating, material
N N_-
> . 13D CSG, BREP, 2D al
Building Building Fu. geometry ! ! geospatla !
Orientation Zones po|nt ClOUd mode|s

Source: Based on Mantha et al. (2015)

> Viewing and editing of BIM models over versions in time
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Common Data Semantic BIM data
Environment
Engineer | ~ ATTPPUT <3| | Semantic BIM
data ’ Design brief data
HTTP GET _
% Design brief
— data :
HTTPPUT | [ || S 4 3D geometric data —
design Rl ®
0SS brief ~ ™~— Q|| & || 3D geometric
HTTP GET = data
= D Simulation data
_ HTTP PUT o
Architect s design % Simulation
DDSS model *__~ n data
nTTReET Operational data
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What data is available and how can it be leveragea

Knowledge Discovery in Databases

Handling the data: data mining, geometry matching, semantics

Towards evidence-based decision support
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DATA MINING APPROACHES Supervised / Predictive

Predictive models and their knowledge representations

v

»  Relationships between input and output variables

Naive Bayes
{ Averaged One-Dependence Estimators (AODE)

|~

Deep Boltzmann Machine (DBM) Bayesian /-~ :y:jesssi;r:‘ ?:::L r:::::rk (BEN) . . o .
F)eep Belief Networks (DBN) \‘L Deep Learning / {‘\ Mdkinomia] Maive Baves } | ra I I I I I I S J Eatéa a I I O I I I a I eX p e rtl S e
Convolutional Neural Network (CNN) 7 \

. "-\\ Bayesian Network (BN)

Stacked Auto-Encoders /

Classification and Regression Tree (CART)

i scostngwachnes G f e iomivr 3 03 Novel knowledge discovery unlikely- input and output

- \!
Boosting |

v

p
N ' C5.0
Bootstrapped Aggregation (Bagging) x Ensemble Decision Tree J~ ) ) i i
P \ / . Chi-squared Automatic Interaction Detection (CHAID)
aBoost \ / / \ o
— \ / \_ Decision Stum
Stacked Generalization (Blending) /| - § a re re d efl n e d
. \_ Conditional Decision Trees

Gradient Boosted Regression Trees (GBRT) / \ '.l -
Radial Basis Function Network (RBFN) \ ' / \_

Perceptron A ' '
— | Neural Networks [ [ Partial Least Squares Regression (PLSR
Back-Propagation ~\ | 1/

A — -
|

Principal Component Analysis (PCA)

|/
' \N—"_ ) T /[ Sammon Mapping
Hopfield Network / ( Machine Learning Algorithms ) s
— — [ Multidimensional Scaling (MDS)

y— ——r
/ |\

Ridge Regression

- ; ) / /" Projection Pursuit U o d / D ° °
Least Absolite Shrinkage and Selection Operator (LASSO) ‘\'f;‘ Regularization / "-l‘ 4 Principal Component Regression (PCR) n s u p e rVI S e e s C rl pt I ve

\
Elastic Net 7 [ \ \ \ Dimensionality Reduction }~ - - )
g % Partial Least Squares Discriminant Analysis

=

Least Angle Regression (LARS) / ) o .
Cublet \_Mixture Discriminant Analysis (MDA)
ubis ’

sz con - |ntrinsic structure, correlations and associations in data

-\ Rule System / | \_ Regularized Discriminant Analysis (RDA)
Zero Rule (ZeroR) 77— — \ .

-
|

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) /

\_ Flexible Discriminant Analysis (FDA)

\_ Linear Discriminant Analysis (LDA)

Linear Regression

k-N Neighbour (kNN) .
Ordinary Least Squares Regression (OLSR) \\| 4 Learen::s\t/e C::: Q;):;tization (LVQ) | n p Ut a n d O U t p U t n Ot p re d efl n e d

Stepwise Regression | ) \\_ Instance Based |- -
o ) - - ~\ Regression / % Self-Organizing Map (SOM)
Multivariate Adaptive Regression Splines (MARS) | - i
i \_ Locally Weighted Learning (LWL)

Locally Estimated Scatterplot Smoothing (LOESS) / N

\ etk Ability to discover previously unknown hidden

\_ Clustering |~ : o
. Expectation Maximization

v

v

\_ Hierarchical Clustering

knowledge

v

No explicit target- ability to discover interesting patterns
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GEOMETRIC FEATURE MATCHING

Well-Known Text (markup language for representing
vector geometry objects on a map)

IFC-SPFF
3D Mesh
Point cloud

Fully semantic geometry

FQ Compoundl J

[50 Wire3 } [‘*’0 Plane2 |
[&J. = - - w’ Shelll | | F"Q Planel; | ] [&‘Q Wirel ]
a P
[aa. Wire2 L*’Q gzgiidricalSuﬁ | [w. Edost

* ¢ circlel ] ‘;'—’_’0 Vertex2 ] l&l’ Vertexl

Source: Perzylo et al. (2015)
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GEOMETRIC FEATURE MATCHING (2)

Query +

Image-based feature matching

hitp:/floc alhost 808%/parliamentispargl -

1 » PREFIX geo: <http://www.opengis.net/ont/geosparql#> 4

2 PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

Graph matching

4 SELECT 2+WKT
5 + WHERE{
. . . 5 ?loc geo:defaultGeometry ?geometry .
Geometric analysis algorithms ' geometry geosasT 2AKT .
8 FILTER(geof:sfWithin(?FWKT, "POLYGON((-6.22 53.372, -6.26 53.372, -6.26 53.38,
-6.22 53.38, -6.22 53.372))"*<http://www.opengis.net/ont/geospargqléwktliteral>)) »

x1.5 -
y:3’0 E% Table Response PivotTable Google Chart JREES ¢
w:1.8 t:0.2

x.o 0 x.3 O Tip: Add a iabel variable prefixed with the geo vanable name to show popups on the map. Eg. fukTLabel . Or, append Color to
y 30 e change the color of the shape or marker
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x:0.0
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<

o
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£y

]

b g |

x:1.0 t:0.2

:0.0
Source: Strobbe et al. (2016) \)/,v:1.0 Source: http://phaedrus.scss.tcd.ie/buildviz/images/osi_dublin_building_yasgui.png



Semantic queries allow for queries and analytics of
associations and context

Derive information based on syntactic, semantic and
structural information contained in data.

Deliver precise results/answer more fuzzy and wide
open questions through pattern matching and
digital reasoning.

Semantic queries work on named graphs, linked
data or triples (subject, predicate, object). Knowledge
always comes in three.

Recourse Description Framework (RDF)- data model
to describe things and their interrelations

Querying RDF: SPARQL- graph matching query
language

"2018-03-21T07:15: 15 «—
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ont:overallHeighj,,_.,t

“2180" |

| inst:WindowX ]
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USER-DRIVEN KNOWLEDGE DISCOVERY

* The outcome of geometric similarity matching and data mining can be captured in graphs

* A decision support system can then be built using direct graph semantic queries (CYPHER, SPARQL)

*  Yet, this results in a highly supervised and biased DDSS, because everything goes through user-defined
semantic queries
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Knowledge Discovery in Databases
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Towards evidence-based decision support
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KEY CONSIDERATIONS IN THE STUDY

(1) the full use of BIM software as a means to connect to previous project data (e.g. through a CDE),

(2) the reliance on web-based semantic representation methods as a means to build a semantically rich
and global graph of data, and

(3) the deployment of Knowledge Discovery in Databases (KDD) to discover hidden knowledge on an
unprecedented scale.
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KEY RESEARCH AIMS AND CHALLENGES

1. Connecting to evidence using high-performing pattern matching

- direct semantic queries

Smart selection of diverse pattern-matching
- geometric feature matching techniques (user-driven!!)

- data mining
2. Building a project data repository

- data selection

Manual methods prevail and need to be

- data cleansing replaced with semi-automatic methods

- data transformation

3. Make data mining results machine-processable and bring the knowledge back to the end-userin a DDSS
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