

ENERGY INFORMATICS

SDU OU44 – Big Data Living Lab

Occupancy Team at SDU Center for Energy Informatics

Vision: Sustainable Software-Defined Buildings in Symbiosis with their Occupants

Post Doc Aslak Johansen, PhD Student Fisayo Caleb Sangogboye, PhD Student Jakob Hviid, PhD Student Anooshmita Das and Software Developers Jens Hjort Schwee, Kennet Vangsgaard, Antonio Lascari, Daniel Åside, Emil Stubbe Kolvig-Raun

25 people in the Center for Energy Informatics. Head of Center is Bo Nørregaard Jørgensen

Why is Occupant Behavior Relevant?

- Technologies alone not necessarily guarantee low energy use in buildings.
- Human behavior plays an essential role in buildings, but it is not well understood and usually over-simplified.

Andreas Wagner William O'Bren Bing Dong Estern Occupant Behavior in Buildings Methods and Chailenges

New book out as result of IEA EBC Annex 66

Relative impact on energy of occupant-related behaviors and building operational parameters (https://www.osti.gov/biblio/1172115)

Chicago, Source Energy EUI of Basecase : 1314 MJ/m²

ENERGY INFORMATICS

Sensing Occupant Behavior

Repurpose infrastructure

Occupant Interactions

Augment Persons

Sanja Lazarova-Molnar, Halldór Þór Logason, Peter Grønbæk Andersen, Mikkel Baun Kjærgaard: Mobile Crowdsourcing of Data for Fault Detection and Diagnosis in Smart Buildings. RACS 2016: 12-17

SDU

ENERGY INFORMATICS

Antonio Jesus Ruiz Ruiz, Henrik Blunck, Thor S. Prentow, Allan Stisen, Mikkel Baun Kjærgaard: Analysis methods for extracting knowledge from large-scale WiFi monitoring to inform building facility planning. PerCom 2014: 130-138

Augment Objects

Software Support for Processing Building Data

 Kjærgaard et. al.: OccuRE: An Occupancy REasoning Platform for Occupancy-Driven Applications. CBSE 2016: 39-48, ACM.

Building Data and Web of Things

Challenges

- Semantic interpretation of data from buildings
- Increasing problem due to increase in digital building components (e.g. Internet of Things)

We have proposed a metadata scheme named **Brick**. The scheme has been created in an international collaboration with UC Berkeley, IBM Research and CMU among others.

Full details available at brickschema.org

Balaji et al., Brick: Towards a Unified Metadata Schema For Buildings. BuildSys 2016: 41-50, ACM.

Press Release: ASHRAE BACnet committee, Project Haystack and the Brick initiative partner to integrate tagging and data modeling into ASHRAE Standard 223P

INFORMATICS

Privacy Handling for Building Data

Challenges

Responsible data handling and privacy by design

Tools and methods for publishing open and real-time data that handle privacy concerns.

Developed the system PAD for protecting anonymity in publishing building related datasets.

Ruoxi Jia, Fisayo Caleb Sangogboye, Tianzhen Hong, Costas Spanos, and Mikkel Baun Kjærgaard: PAD: Protecting Anonymity in Publishing Building Related Datasets. BuildSys 2017, ACM

INFORMATICS

University of Southern Denmark

OU44 Building Living Lab

Basic Information:

- Construction 2014-2015
- Price: 120 MDKK
- Number of Floors: 4
- Area: Blueprints: 8519 m² / Official: 9600 m²

SDU 🍲

ENERGY INFORMATICS

Objectives:

- Automated performance testing
- Continuous performance tests and benchmarking
- FDD
- Automated zone model generation
- Occupancy modeling
- Multiobjective Optimal MPC

OU44 Building Living Lab

Ventilation: 4 ventilation systems, each with a rotary heat exchanger for reclaiming heat from exhaust air and heating capacity from district heating
Heating: Radiators and ventilation
Light: Dimmable via setpoints
Blinds: Controllable on a per-room basis
Meters:

SDU 🏠

ENERGY INFORMATICS

- Electrical: Building-level, floor-level and half-floor level
- District heating: In / out
- Heated Water: Electric and flow meters

BMS:

- Room-level: Logic distributed on Schneider Electric Automation Servers
- Ventilation: Schneider Electric StruxureWare

Models:

- Revit and Google Schetch-Up
- BE10 and Energy+
- BRICK metadata model

OU44 Parterre level

ENERGY INFORMATICS

OU44 Ground level

OU44 1st Floor

Temperature CO2, Humidity, PIR Vent. valve positions Radiator valves positions Electricity meters Heating meters 3 Illuminance Bluetooth Beacons

Temperature CO2, Humidity, PIR Vent. valve positions Radiator valves positions Electricity meters 3 Illuminance

Temperature CO2, Humidity, PIR Vent. valve positions Radiator valves positions Electricity meters Heating meters 3 Illuminance iBeacons

OU44 Common Sensors

SDU 🎓

Living Lab Data for Research and **Teaching**

Data to SDU Students and Researchers

SDU谷

Jens & Dan Software Engineering Big data analytics of occupancy and building environmental data

Daniel & Alexander Energy Technology Study of ventilation system via simulations

Peter & Halldór **Software Engineering** Smartphone app for reporting building flaws

o market and the second second

ICT-driven Coordination for Reaching 2020 Energy Efficiency Goals in Public and Commercial Buildings

COORDICY - Objectives

- Closing the energy performance gap in energy-efficient public and commercial buildings
- Achieving cost-effective energy savings by balancing energyretrofits and building intelligence
- Improving building energy performance by increasing building intelligence

COORDICY - Partners

Danish						
	SDU Center for Energy Informatics	Green Tech Center - the living energy lab	Green Tech Center	Schneider Blectric	Schneider Electric A/S	
	Danish Technological Institute	RAMBOLL	Rambøll	Internat	ional	
	Danish Building & Property Agency	SIEMENS	Siemens		UC Berkeley, i4Energy	
AARHUS	Municipality of Aarhus	Re <mark>M</mark> oni	ReMoni	BERKELEY LAB	Lawrence Berkeley National Laboratory	
	Municipality of Odense		Develco Products	NASA	NASA Ames Sustainability Base	
Region of Southern Denmark OUH Odense University Hospital	Odense University Hospital - OUH	vemco group	Vemco Group A/S	● DANISH CLEANTECH HUB	Danish Cleantech Hub in NY	

COORDICY - Approach

ENERGY INFORMATICS

Closing Energy Performance Gap

Energy Performance Test

- Benefits:
 - Continuous monitoring
 - Potential for FDD
 - Potential improved performance
 - Smarter decisions
 - Fewer faults

ENERGY INFORMATICS

Online Performance Monitoring and SDU Diagnostics

- Develop an overall dynamic energy model in EnergyPlus to predict the energy performance of the building aided by the Revit BIM model.
- Simulate the building's expected behavior for the previous day, given
 - Data from weather station
 - Occupancy data from camera counts
 - Set Points and building operation data

Compare predictions with the actual performance data from meters.

INFORMATICS

Increasing Building Intelligence

Objective name	Objective goal		
TemperatureComfort	Keep temperature 20-22c		
TemperatureDiff	Prevent Tdiff from exceeding 8		
Temperature 18	Prevent more than x h/y at 18		
Temperature 27	Prevent more than x h/y at 27		
TemperatureOver27	Prevent more than y h/y > 27		
TemperatureUnder18	Prevent more than y h/y < 18		
CO2 Comfort	Keep CO2 under 450		
CO2 Danger	Keep CO2 under 1200		

Objective name	Objective goal
ElectricityMinimize	Minimize electricity use
AirVolumeMinimize	Minimize needed air volume
ElectricityCostMinimize	Minimize price of electricity
DRComply	Ensure DR event compliance

Fig: Ventilation system model (Modelica/Dymola)

Predicting Occupant Counts for Building Control

Sangogboye, Fisayo Caleb; Arendt, Krzysztof; Singh, Ashok Kumar; Veje, Christian; Kjærgaard, Mikkel Baun; Jørgensen, Bo Nørregaard, Performance comparison of occupancy count estimation and prediction with common versus dedicated sensors for building model predictive control, Building Simulation, 2017

Time of the day

SDU 🏠 ENERGY INFORMATICS

Output

Occupancy Team at SDU Center for Energy Informatics

Vision: Sustainable Software-Defined Buildings in Symbiosis with their Occupants

Please get in contact if you see future collaboration potentials...

email: <u>mbkj@mmmi.sdu.dk</u>

